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While continuing our studies with methylenethiophosphinate 
complexes1 and organogold ylide complexes,2,3 we have synthesized 
a new dinuclear gold ylide species [AuCH2P(S) (C6H5)2]2, [Au-
(mtp)]2 (I). The oxidative-addition properties of this species have 
proved to be especially interesting since both two-center and 
single-center, two-electron oxidative-addition products have been 
obtained incorporating I2. The oxidative addition of halogens and 
pseudohalogens to dimeric Au(I) phosphorus ylide complexes to 
yield Au(II)-Au(II) species is now well established3"5 (reaction 
A). Analogous dinuclear dithiocarbamate gold(I) compounds 
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0 Preliminary refinement to 10%. 

Methylenethiophosphinate complexes are expected to exhibit 
properties characteristic of both phosphorus ylide and dithioate 
complexes. This is indeed the case with the chemistry of [Au-
(mtp)]2. In separate reactions, the oxidative addition of iodine 
to I has yielded both an isovalent Au(II)-Au(II) complex, II, as 
observed with gold(I) phosphorus ylide dimers, and a unique 
mixed-valent Au(I)/Au(III) isomer, III, (C). 
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are oxidized at room temperature to monomeric Au(I)/Au(III) 
complexes under similar conditions6"9 (reaction B). 
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All three compounds, I—III, have been characterized structurally 
by X-ray diffraction methods.23 The Au(I)-Au(I) dimer, I, has 
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Figure 1. Molecular structure of [Au1CH2P(S)(C6H5)J]2, [Au'(mtp)]2 
(50% probability thermal ellipsoids); see table I for bond distances. 

Figure 2. Molecular structure of [Auu(mtp)I]2 (50% probability thermal 
ellipsoids). 

Figure 3. Molecular structure of [AuHmIp)2Au111I2] (50% probability 
thermal ellipsoids for non-carbon atoms). 

a trans ligand geometry (Figure 1), which is retained upon oxi­
dation to the isovalent Au(II) iodide dimer (Figure 2). The 
intramolecular Au-Au distance in I is 3.040 (1) A while the 
intermolecular Au-Au distance is 3.223 (I)A. The Au-Au bond 
length in II averages 2.609 ( I ) A , without any intermolecular 
Au-Au interactions. The Au-Au bond length is substantially 
reduced in length in comparison to that observed in [Au-
(CH2)2PR2I]2 (2.69 A), while the Au-I distances (2.69 A) are 
similar.5,10 The Au-Au distance in the mixed-valent Au(I)/ 
Au(III) dimer (III) is 3.05 A. The Au(I)/Au(III) dimers stack 
along the y axis with an intermolecular spacing of ~3.4 A (Table 
I). 

The Au(I)/Au(III) dimer, however, exhibits a cis chelate ligand 
configuration with both a linear S-Au(I)-S geometry and a 
JrAnS-Au111I2C2 planar arrangement (Figure 3). Although nu-

(23) Experimental data. C26H28P2S2Au1: monoclinic, space group Cyc 
(No. 15), a = 23.874 (4) A, b = 9.030 (1) A, c = 12.172 (2) A, /3 = 105.61 
(1)°, Z = 4, 2161 independent reflections with / > 2.Sa(I). R = 0.047, Rw 
= 0.059. C26H28P2S2I2AU11JAU(II)-AU(II)]: monoclinic, space group P2/n, 
a = 12.615 (4) A, b = 12.804 (2) A, c = 19.303 (3) A, /3 = 94.30 (1)°, Z 
= 4, 3473 independent reflections with / > 2.5cr(/). Two independent mol­
ecules were found; R = 0.052, Rv = 0.053. Red crystals of [Aun(mtp)I]2 were 
obtained by evaporation of a 1,2-C2H4Cl2 solution of [Au(mtp)]2 and I2 
(1.0:0.9 molar ratio of [Au(mtp)]2.I2). No molecular ion observed in FDMS. 
The 1H NMR spectrum in CDCl3 exhibits resonances at 8 3.88 (-CH2,

2JKli 
= 12 Hz) and 7.4-8.0 (C6H5). C26H28P2S2IjAu2[Au(In)ZAu(I)]: monoclinic, 
space group C2/e (No. 15), a = 25.187 (4) A, b = 6.4465 (8) A, c = 42.5443 
(11) A, |8 = 92.14 (2)°, Z = 8, 3747 independent reflections with / > 2.Sa(I) 
preliminary refinement to 10% R factor. Red crystals of [Au1JmIp)2Au111I2] 
were obtained by the evaporation of a (v:v) solution of CH2I2 and 1,2-C2H4Cl2 
containing [Au(mtp)]2 and iodine. No molecular ion observed in FDMS. 
Both diiodide species exhibit a peak at m/e 659 corresponding to [Au(mtp)2]

+. 
All calculations were performed using both Enraf-Nonius SDP and Nicolet 
SHELXTL crystallographic programs. All data was collected on Nicolet P3f 
four-circle diffractometer at ambient temperature with graphite-mono-
chromated Mo Ka radiation. All data corrected for Lorentz, decay, polari­
zation, and absorption effects. 

merous examples of Au(I) dimers incorporating sulfur are 
known,11"17 there are few examples with higher oxidation states 
of gold, and none previously have been conclusively verified to 
be Au(H)-Au(II) or mixed valent. 

The nature of the Ph2P(S)CH2" ion permits the isolation of a 
complex that contains two well-established bonding configurations, 
a linear S-Au(I)-S as found in the dithioate gold(I) dimers and 
7/WJj-Au111C2I2 as observed with [Au11VCN)2I2]-

18-19 or [([4-C-
H3C6H4NH]2C)2AuI2]ClO4.22 The nature of the ligand rear­
rangement that yields the novel Au(I)/Au(III) dimer is not yet 
known. However, the electronic spectrum of the reaction mixture 
that produces the mixed-valence species, III, indicates the presence 
also of the Au(II)-Au(II) diiodide dimer, II. Further details of 
the chemistry of [AuCH2P(S)Ph2J2 and the isovalent and mix­
ed-valent diiodide species will be reported later. 

Synthesis of [AuCH2P(S)Ph2J2. The dimer I was synthesized 
by adding 1 equiv of Li(mtp) dropwise to an diethyl ether sus­
pension of Ph3AsAuCl20 under nitrogen at -30 0C. As the reaction 
mixture is allowed to warm to ambient temperature, the arsine 
complex gradually disappears, and a colorless solution results. 
After approximately 30 min, the solution becomes yellow, and 
I is isolated as a yellow precipitate. The yield is 80%. Recrys-
tallization from hot toluene yields light yellow crystals, mp 250 
0C dec, FDMS m/e 856. Anal. Calcd for Au2C26H24P2S2: C, 
36.46; H, 2.82. Found; C, 36.67; H, 2.91. 
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The thermally induced, first-order 1,3-sigmatropic shift in 
vinylcyclopropane to cyclopentene proceeds concurrently with 
geometric isomerization of the cyclopropane. Willcott showed 
that a freely rotating biradical is involved in the geometric isom­
erization,1 and Baldwin found that the 1,3 shift in trans-2-
methyl-l-(frvz«.s'-propenyl)cyclopropane occurs with 65% si, 22% 
sr, 8% ar, and 5% ai stereochemistry.2 In the latter case ap­
propriate corrections were made for the loss of optical activity 
of starting material. Also formed was the 1,4-diene resulting from 
the well-known homo-l,5-hydrogen shift of c«-2-(methylvinyl)-
cyclopropanes.3 This data may be interpreted as indicating four 
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